Harmonic Surface Mapping with Laplace-Beltrami Eigenmaps

نویسندگان

  • Yonggang Shi
  • Rongjie Lai
  • Kyle C. Kern
  • Nancy L. Sicotte
  • Ivo D. Dinov
  • Arthur W. Toga
چکیده

In this paper we propose a novel approach for the mapping of 3D surfaces. With the Reeb graph of Laplace-Beltrami eigenmaps, our method automatically detects stable landmark features intrinsic to the surface geometry and use them as boundary conditions to compute harmonic maps to the unit sphere. The resulting maps are diffeomorphic, robust to natural pose variations, and establish correspondences for geometric features shared across population. In the experiments, we demonstrate our method on three subcortical structures: the hippocampus, putamen, and caudate nucleus. A group study is also performed to generate a statistically significant map of local volume losses in the hippocampus of patients with secondary progressive multiple sclerosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Laplacian Eigenmaps

Geometrically based methods for various tasks of data analysis have attracted considerable attention over the last few years. In many of these algorithms, a central role is played by the eigenvectors of the graph Laplacian of a data-derived graph. In this paper, we show that if points are sampled uniformly at random from an unknown submanifold M of RN , then the eigenvectors of a suitably const...

متن کامل

A Discrete Laplace-Beltrami Operator for Simplicial Surfaces

We define a discrete Laplace-Beltrami operator for simplicial surfaces (Definition 16). It depends only on the intrinsic geometry of the surface and its edge weights are positive. Our Laplace operator is similar to the well known finite-elements Laplacian (the so called “cotan formula”) except that it is based on the intrinsic Delaunay triangulation of the simplicial surface. This leads to new ...

متن کامل

Heat Kernel Smoothing of Anatomical Manifolds via Laplace-Beltrami Eigenfunctions Submitted to IEEE Transactions on Medical Imaging

We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions. The Green’s function of an isotropic diffusion equation on a manifold is analytically represented using the eigenfunctions of the Laplace-Beltraimi operator. The Green’s function is then used in explicitly constructing heat kernel smoothing as a series expansion of the eigenfunctions. Unlike many previous ...

متن کامل

Gyroharmonic Analysis on Relativistic Gyrogroups

‎Einstein‎, ‎M"{o}bius‎, ‎and Proper Velocity gyrogroups are relativistic gyrogroups that appear as three different realizations of the proper Lorentz group in the real Minkowski space-time $bkR^{n,1}.$ Using the gyrolanguage we study their gyroharmonic analysis‎. ‎Although there is an algebraic gyroisomorphism between the three models we show that there are some differences between them‎. ‎Our...

متن کامل

High-Order Regularization on Graphs

The Laplace-Beltrami operator for graphs has been been widely used in many machine learning issues, such as spectral clustering and transductive inference. Functions on the nodes of a graph with vanishing Laplacian are called harmonic functions. In differential geometry, the Laplace-de Rham operator generalizes the Laplace-Beltrami operator. It is a differential operator on the exterior algebra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 11 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2008